Страница обновлена 12.05.2022

муниципальное общеобразовательное бюджетное учреждение "Средняя школа № 2 имени Д. В. Крылова" г. Гаврилов-Ям

Страница обновлена 12.05.2022
муниципальное общеобразовательное бюджетное учреждение "Средняя школа № 2 имени Д. В. Крылова" г. Гаврилов-Ям

Аннотация к рабочей программе по учебному предмету физика 7-9 классы

  1. Место учебного предмета в учебном плане

Федеральный учебный план для образовательных учреждений Российской Федерации отводит 242 часа для обязательного изучения учебного предмета на этапе основного общего образования из расчета 2-х учебных часов в неделю в 7-8 классах и 3-х учебных часов в неделю в 9 классах. Примерная программа рассчитана на 242 учебных часов. При этом в ней предусмотрен резерв свободного времени в размере 10% от общего объема часов для реализации авторских подходов, использования разнообразных форм организации учебного процесса, внедрения современных педагогических технологий. Учебный план ООО МОБУ СШ №2 им. Д.В. Крылова на 2021-2022 учебный года предусматривает 33 учебные недели в 9 классе и 34 учебные  недели  в 7и в 8 классах, поэтому на изучении физики  отводится 235 учебных часов по рабочей программе.

  1. Цель.

  • усвоение учащимися смысла основных понятий и законов физики, взаимосвязи между ними;

  • формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;

  • систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;

  • формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения;

  • организация экологического мышления и ценностного отношения к природе;

  • развитие познавательных интересов и творческих способностей учащихся, а также интереса к расширению и углублению физических знаний и выбора физики как профильного предмета.

        Достижение целей обеспечивается решением следующих задач:

  • знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;

  • приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;

  • формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;

  • овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;

  • понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

  1. Структура курса

№ п/п

 

Название темы

 

Часы по авторской программе

Часы по рабочей программе

 

Лабораторные работы

Лабораторные опыты

Контрольные работы

 

7 класс

 

 

 

 

 

1

Физика и физические методы изучения природы

4

5

1

1

1 стартовая диагностика

2

Первоначальные сведения о строении вещества

6

6

1

1

1

3

Взаимодействие тел

23

21

6

12

1

4

Давление твердых тел, жидкостей и газов

21

21

3

5

1

5

Работа. Мощность. Энергия.

13

11

3

3

1

6

Повторение

3

4

 

 

1

 

Итого:

70

68

 

 

 

 

8 класс

 

 

 

 

 

7

Тепловые явления

23

23

4

3

2

8

Электрические явления

27

28

5

5

2

9

Электромагнитные явления

7

5

2

1

1

10

Световые явления

9

9

3

4

1

11

Повторение

4

3+(1)

-

-

1 стартовая диагностика+ 1 итоговая контрольная работа

 

Итого:

70

68

 

 

 

 

9 класс

 

 

 

 

 

12

Законы взаимодействия и движения тел

34

39

4

4

3 стартовая диагностика 

13

Механические колебания и волны. Звук

15

15

2

2

1

14

Электромагнитное поле

25

23

3

4

1

15

Строение атома и атомного ядра

20

19

4

-

1

16

Строение и эволюция Вселенной

5

5

1

-

-

17

Повторение

6

1

-

-

1

 

Итого:

105

102

 

 

 

 

4.Основные образовательные технологии

1  Информационно – коммуникационная технология

2    Технология развития критического мышления

3    Проектная технология

4    Технология развивающего обучения

5    Здоровьесберегающие технологии  

6    Технология проблемного обучения

7    Игровые технологии

8    Кейс – технология

9  Технология интегрированного обучения

10  Педагогика сотрудничества. 

11  Технологии уровневой дифференциации 

12  Групповые технологии. 

    1.  Традиционные технологии (классно-урочная система)

5. Требования к результатам освоения программы.

В результате изучения физики  в 7-9 классе обучающийся научится:

. соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;

. понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;

. распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;

. ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.

Примечание. При проведении исследования физических явлений измерительные приборы используются лишь как датчики измерения физических величин. Записи показаний прямых измерений в этом случае не требуется.

. понимать роль эксперимента в получении научной информации;

. проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.

Примечание. Любая учебная программа должна обеспечивать овладение прямыми измерениями всех перечисленных физических величин.

. проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

. проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;

. анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;

. понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;

. использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы Интернет.

получит возможность научиться:

. осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;

. использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

. сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;

. самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;

. воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;

. создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Механические явления

Выпускник научится:

  • распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное  движение,  относительность механического движения, свободное падение тел, инерция, взаимодействие тел,  передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закрепленную ось вращения,

  • описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление,  кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, ; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

  • анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы),  закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;

  • решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, масса тела, плотность вещества, сила, давление,  кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

  • использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространств;

  • различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, Архимеда и др.);

  • находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Тепловые явления

Выпускник научится:

  • распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел;

  • описывать изученные свойства тел и тепловые явления, используя физические величины: коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

  • анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;

  • различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;

  • приводить примеры практического использования физических знаний о тепловых явлениях;

  • решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины коэффициент полезного действия теплового двигателя: на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

  • использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;

  • различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;

  • находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

  • Электрические и магнитные явления

  • Ученик научится:  распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.

  • составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).

  • использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.

  • описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.

  • анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.

  • приводить примеры практического использования физических знаний о электромагнитных явлениях

  • решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

  • Ученик получит возможность научиться:  использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;

  • различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля- Ленца и др.); 

  • использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

  • находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Квантовые явления

Выпускник научится:

  • распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения атома; 

  • описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

  • анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;

  • различать основные признаки планетарной модели атома, нуклонной модели атомного ядра; 

  • приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

Выпускник получит возможность научиться:

  • использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; 

  • соотносить энергию связи атомных ядер с дефектом массы;

  • приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования; 

  • понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

  • указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;

  • понимать различия между гелиоцентрической и геоцентрической системами мира;

Выпускник получит возможность научиться:

  • указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;

  • различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;

  • различать гипотезы о происхождении Солнечной системы.

6.Общая трудоемкость курса

234 часа

      7.формы оценивания.

  • Текущая аттестация: стартовая диагностика, тесты, физические диктанты, самостоятельные  работы, лабораторные работы, контрольные работы

  • Промежуточная аттестация:

  • Промежуточная  аттестация по физике в 7-8  классах проходит в формате   интегрированного зачета.

9 класс – тестовая работа

      8.  Составитель программы. Ермушина Ю.А.

назад